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I am a geometer, and I am interested in the geometric topology of manifolds
and in geometric group theory. Manifolds and their symmetries are ubiquitous
throughout in mathematics and its applications. Surfaces were studied already
in the nineteenth century by Riemann, and higher dimensional manifolds be-
came central of objects in the twentieth beginning with the work of Poincaré,
and continuing with the work of Thom, Milnor, Wall, Smale, Novikov—to
name just a few.

My work makes use of the techniques and ideas from algebraic and combi-
natorial topology, surgery theory, number theory, and complexity theory. A
major theme of much of my work is the extent to which an object with some
singularities or deficiencies can be “resolved” or “improved” to a nicer object.
For instance,

• in Section 1.1, there is the question of whether the classifying space for
a Q-PD group can be “resolved” to an aspherical closed Q-homology
manifold;
• in Section 1.2, there is the question of whether an aspherical topological

manifold can be “resolved” by a simplicial complex;
• in Section 2.1, there is the question of whether a PL Q-homology mani-

fold M having cohomology ring H?(M ;Q) = Q[x]/(x3) can be resolved
by a smooth manifold; and
• in Section 2.4, there is the issue of whether, say, a cochain can be

replaced by a “polynomially bounded” cochain.

To make progress on questions like these, I make significant use of compu-
tational techniques, and often use the computer algebra system sage to run
experiments. My research has three specific directions:

• aspherical manifolds and Poincaré duality groups,
• computations surrounding high-dimensional manifolds, and
• undergraduate research.

By “undergraduate research,” I mean research projects involving undergrad-
uates (some of which are listed on Page 8) but also research projects which
occur as part of online courses and my NSF TUES grant. As of November
2013, there have been 147k enrollments in my online courses, which have re-
sulted in significant amounts of data. This project is discussed in Section 3.4.
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1. Aspherical manifolds and Poincaré duality groups

1.1. Rational Poincaré duality. A group G is a Poincaré duality group if its
classifying space BG satisfies Poincaré duality; examples include fundamen-
tal groups of aspherical manifolds. C. T. C. Wall asked whether a Poincaré
duality group is necessarily the fundamental group of an aspherical manifold,
and M. Davis in [MR1747535] broadened Wall’s question to R-homology
manifolds:

Question 1. Is every finitely presented torsion-free group satisfying Poincaré
duality with R-coefficients (“R-PD”) the fundamental group of an aspherical
closed R-homology manifold?

My thesis answers M. Davis’ question in the negative, using Bestvina–Brady
Morse theory to produce Q-PD groups G for which BG does not have the
homotopy type of a finite complex.

I also addressed a generalization version of M. Davis’ question. There are
weaker geometric conditions that nonetheless imply a group is R-PD: for π to
satisfy Poincaré duality with R coefficients, it suffices that π act freely on an
R-acyclic R-homology manifold.

Question 2. Does every finitely presented group π satisfying Poincaré duality
with R coefficients act freely on an R-acyclic R-homology manifold?

This is interesting when R = Q. All finite groups are 0-dimensional Q-PD, and
extensions of Q-PD groups by finite groups are therefore Q-PD. The restriction
to torsion-free groups is not necessary, as groups with torsion may act freely
on Q-acyclic (albeit not contractible) finite complexes.

A particular class of Q-PD groups to consider are uniform lattices with
torsion (which, by Selberg, are extensions of manifold groups by finite groups).

Theorem (Fowler). Let Γ be a uniform lattice containing an element of finite
order ( 6= 2). Although Γ is Q-PD, Γ does not act freely on a Q-acyclic Q-
homology manifold.

The proof involves two obstructions: a finiteness obstruction, and a controlled
symmetric signature. With more work, I hope to address the situation for Γ
containing 2-torsion

Sketch of Proof: The group Γ is given as an extension 0 → π → Γ → G → 0,
where π is torsion-free, and G is a finite group. Given the Baum-Connes
conjecture for Γ, the Γ-equivariant signature operator on Eπ (which is the
universal space for proper Γ actions) cannot be lifted back to the signature
operator on BΓ.

To obstruct this lift, the space Eπ is used to determine the equivariant
signature operator of Γ acting on the universal cover of the hypothetical ho-
mology manifold; geometric localization arguments can then be combined with
calculations near fixed points to give a contradiction—although this last step
fails in the absence of odd torsion. �
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In addition to controlled surgery considerations, there is a finiteness ques-
tion:

Question 3. For a given group G, does there exist a free action of G on an
R-acyclic complex, with finite quotient?

Bestvina and Brady [MR1465330] call such groups FH over R, in analogy
with other homological finiteness conditions.

In many cases, a finiteness obstruction will prevent Γ from acting on a Q-
acyclic finite complex, let alone a Q-homology manifold. Again, consider a
uniform lattice Γ, and write 0→ π → Γ→ G→ 0, with π torsion-free and G
finite. For convenience, G = Z/pZ. If G acts freely on a finite complex Bπ,
then the Lefschetz fixed point theorem implies χ(BπG) = 0.

The equivariant finiteness obstruction fits into a categorical framework de-
fined by Lück [MR1027600]; the condition χ(BπG) = 0, while necessary for
Γ to be FH, is not enough: χ(BπG) can vanish while the Euler characteristics
of the connected components of BπG may not vanish. If χ(C) = 0 for each
connected component C of BπG, then the equivariant finiteness obstruction
does indeed vanish. The componentwise vanishing of the Euler characteristic is
easy to verify in some cases, such as when the fixed sets are all odd-dimensional
submanifolds.

1.2. Aspherical manifolds and triangulations. Kirby and Siebenmann
showed that there are manifolds that do not admit PL structures [MR242166],
and yet the possibility remained that all manifolds could be triangulated,
meaning that for every manifold M , there is a simplicial complex K so that the
geometric realization of K is homeomorphic to M , but of course the simplicial
complex K is not a PL triangulation, meaning the links are not spheres.

Freedman showed that there are 4-manifolds that cannot be triangulated
[MR679066]. Davis and Januszkiewicz applied a hyperbolization procedure
to Freedman’s 4-manifolds to get closed aspherical 4-manifolds that cannot be
triangulated [MR1131435]. What about higher dimensions?

In the late 1970s Galewski and Stern [MR558395] and independently, Ma-
tumoto, showed that non-triangulable manifolds exist in all dimensions > 4
if and only if homology 3-spheres with certain properties do not exist. In
[manolescu2013conley], Manolescu showed that there were no such homol-
ogy 3-spheres, and hence non-triangulable manifolds exist in every dimension
> 4.

Applying a hyperbolization technique to the Galewski-Stern manifolds shows
the following.

Theorem 4 (Davis–Lafont–Fowler [aspherical]). Let n > 5. There exists a
closed aspherical n-manifold which cannot be triangulated.

However, the following question remains open.

Question 5. Do there exist closed aspherical 5-manifolds that cannot be tri-
angulated?
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Computer search for Poincaré duality groups. There are well-known al-
gorithms for computing the group cohomology of finite groups [MR603653],
but there are also algorithms for computing the group cohomology of auto-
matic groups [MR2093885], which I could improve to compute the cup prod-
uct structure. The examples of Q-PD groups in Section 1.1 have a common
structure as extensions of finite (0-dimensional) groups.

Question 6. Can one find new examples of Q-PD groups among automatic
groups?

Considering that it is not yet clear what sorts of restrictions automaticity
might impose on a Poincaré duality group, such examples are even interesting
independent of their usefulness for understanding Q-homology manifolds.

With the goal of generalizing the theory of automatic groups, Ranicki posed
the problem of extending automatic structures on groups to a similar structure
on group rings and forms over them [MR1388296]; developing a theory of
“automatic algebra” is a great goal in its own right, and, practically speaking,
such a theory would permit experimentation on algebraic Poincaré complexes
using computer algebra systems.

A computer search could also proceed for new hyperbolic Z-PD groups; for
such Γ, it is now known that BΓ is homotopy equivalent to a Z-homology
manifold (if dim > 4, by combining [MR1394965] with work of Bartels and
Lück). Upon finding some examples, it might then be possible to discover a
group Γ so that BΓ has the homotopy type of a Z-homology manifold, but
not the homotopy type of a manifold.

2. Computations surrounding high-dimensional manifolds

2.1. Computing the L-polynomial. The Hirzebruch L-polynomial is one
place where number theory very strongly interacts with high-dimensional topol-
ogy [MR339202]. Recall that the Hirzebruch signature theorem relates the
signature of a smooth closed manifold M4k to

∑
I LIpI(M). Unfortunately,

the näıve method to compute coefficients LI of the Hirzebruch L-polynomial
is much too slow for applications; Zhixu Su and I have discovered a recursive
method which is fast enough to compute many coefficients.

Solutions to some Diophantine equations related to these L-polynomials
give rise to manifolds having a truncated polynomial algebra as their rational
cohomology ring; such manifolds may exist even when the corresponding trun-
cated polynomial algebra over Z is not the cohomology ring of any space. For
instance, there is a manifold having the rational cohomology that OP 4 would
be expected to have, if OP 4 existed.

On the other hand, nonexistence results are also possible. A rational pro-
jective plane means a smooth manifold M4n with

H?(M ;Q) = Q[x]/(x3) with |x| = 2n.

Question 7. For which n is there a rational projective plane M4n?
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There is a piecewise linear Q-homology manifold with Q[x]/(x3) as its coho-
mology ring, so this question can be viewed as a question about whether that
Q-homology manifold can be “resolved” by a smooth manifold. Integrally, this
is not always possible by the celebrated work of Adams [MR133837], but in
Zhixu Su’s thesis, it was shown that there is a rational projective plane in
dimension 32. But it is not always possible, even rationally.

Theorem 8 (Fowler–Su). There is no rational projective plane in dimen-
sion 64.

This boils down to some number theory. Since a rational projective plane
has signature one, we would be seeking a solution to s8,8x

2 ± s16y = ±1 for
integers x and y. Note that 37 divides the numerator of s16, because 37 divides
B32—perhaps not so surprising considering 37’s status as the smallest irregular
prime. So it is enough to show there is no solution to x2 6≡ ±1/s8,8 (mod 37).
Since s16 ≡ 0 (mod 37),

s8,8 ≡
sk

2 − s2k
2

(mod 37)

≡ sk
2

2
(mod 37),

but neither 2 nor −2 is a quadratic residue modulo 37.
The same argument works to rule out a rational projective plane in dimen-

sion 2k+3 provided one can find a prime p so that

• 2 and −2 are quadratic nonresidues modulo p,
• νp(s2·2k) > 0, but
• νp(s2k) = 0.

To ensure 2 is a quadratic nonresidue, it is enough that p 6≡ ±1 (mod 8); to
ensure that −2 is also a quadratic nonresidue, we further want p ≡ 5 (mod 8).

The fact that divisors of 22k−1 − 1 are rarely (never?) 5 mod 8 tells us not
to look for such primes among the divisors of the Mersenne factor. The above
desiderata are satisfied by finding a prime p so that

• p ≡ 5 (mod 8),
• p > 4 · 2k,
• p divides the numerator of B4·2k ,
• p does not divide the numerator of B2·2k .

The number theory becomes rather involved computationally. For example,
the prime p = 502261 is 5 mod 8 and divides the numerator of B4·211 but not
B2·211 , which rules out a rational projective plane in dimension 214 = 4096;
similarly, the prime p = 69399493 is 5 mod 8, divides the numerator of B4·221

but not B2·221 , which rules out a projective plane in dimension 224. These
calculations are possible due to tables of irregular primes produced by Joe
P. Buhler and David Harvey [MR2813369].

Looking over these calculations, there are things that we can say in general.
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Theorem 9 (Fowler–Su). If Mn is a rational projective plane, then n = 2a+2b

for a, b ∈ N.

This result has some interesting consequences, such as the fact that there
is a topological manifold which is not Q-homotopy equivalent to a smooth
manifold. And even in dimensions 4n for which there is a rational projective
plane, a refined question can be explored.

Question 10. Suppose M4n is a rational projective plane. How highly con-
nected can M4n be, integrally?

When 4n = 32, we have a particularly nice answer by doing Â-genus cal-
culations: there does not exist a simply-connected closed Spin manifold M32

which is a rational projective plane, so a 32-dimensional example cannot even
be integrally 2-connected. Calculations involving the Steenrod algebra and
Stiefel-Whitney classes may provide other methods for determining how highly
connected a rational projective plane must be.

Finally, another interesting question is to study the asymptotic running time
for algorithms computing the L-polynomial.

Question 11. How quickly can the L-polynomial be computed?

Such questions tie into Bernoulli number calculations, for which there are
impressively fast analytic methods [MR2684369]. This would be a nice his-
torical story, since the computation of Bernoulli numbers was the goal of a
computer program from 1843 written by Ada Lovelace [MR550674].

2.2. Computing L-classes. Beyond the L-polynomial, computation of the
total L-class would also permit certain manifolds to be recognized. Here is an
example of such a problem and a possible approach. Brehm and Kühnel in
[MR1180457] exhibit a few different combinatorial 15-vertex triangulations
of an 8-manifold “like” the quaternionic projective plane HP 8. One of these
examples X8 is especially symmetric, and likely PL homeomorphic to HP 8.

Question 12. Is there a PL homeomorphism between the 15-vertex complex
of Brehm–Kühnel and HP 8?

Despite more recent work (e.g., [MR3038783]) which has placed these ex-
amples in a nice context, this question remains open. I propose answering this
question with a direct computation of the rational L-class by implementing
the procedure in [MR440554]. It is perhaps surprising that this can be done
effectively. The relevant steps are to

• find a simplicial map f : X8 × Sn → Sn+8 of nonzero degree,
• consider the preimage f−1(x) of some point x ∈ Sn+8, and
• compute the signature of f−1(x) by computing the cup product pairing

on H?(f−1(x);Q).

Of these, finding the map f has proven to be more involved than I would have
hoped; the stabilized copy of X8 needs to be subdivided to get a map to a
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sphere, and this subdivision quickly increases the number of simplexes that
need to be stored, in spite of how small the 15-vertex triangulation is at first.
Nevertheless, I am optimistic that this is possible.

2.3. Computing Stiefel-Whitney classes. Having considered experiments
with the L-classes—which amount to experiments with the Pontrjagin classes—
there are also experiments one can do with Stiefel-Whitney classes. This
project is joint work in progress with Jean Lafont.

Let G be a finite group. The Vasquez invariant n(G) is the natural number
so that, for any flat manifold M with holonomy G, then M is a toral expansion
of some flat manifold with dimension ≤ n(G). Computing n(G) is Problem 4
of [MR2252897].

That such a number n(G) exists is a result of Vasquez’ [MR267487], where
Vasquez also points out that, in dimension > n(G), the characteristic algebra
of M vanishes. In other words, for a flat manifold M with holonomy G,

wi1(M)wi2(M) · · ·win(M) = 0

when i1+i2+· · ·+in > n(G). For a given group G, by explicitly producing flat
manifolds M with holonomy G, a nonzero product of Stiefel-Whitney classes
yields a lower bound on n(G). So how is one to produce a “random” flat
manifold with holonomy G? Restrict to the case of G = (Z/2Z)k. Then a
nice reasonable collection of flat manifolds are the real Bott manifolds, which
are given by some combinatorial information [MR2915482], namely a matrix
with entries in {0, 1}.

Question 13. Let G = (Z/2Z)k and let M be a real Bott manifold with
holonomy G. What is the largest nonzero product of Stiefel-Whitney classes
of M?

Given a random matrix, I have already written code to compute the Stiefel-
Whitney classes. Probably more can be said by using the fact that the holo-
nomy group we are dealing with is abelian.

It would also be interesting to have some of explanation of the statistics
I am seeing in the data. For example, with 26831 random 12-by-12 upper
triangular matrices so that w2w3w4 is nontrivial, only forty were found with
holonomy (Z/2Z)6 but 10999 were found with holonomy (Z/2Z)9.

2.4. Polynomially bounded homotopy theory. In controlled topology,
notions like homotopy are refined to include a condition on their size, measured
via a reference map to a metric space. There are different versions of controlled
topology in current use, including bounded control and continuous control.
But there are other versions of control that are worth considering.

That is not so surprisingly: much of the success of geometric group theory
comes by thinking about asymptotic invariants of a group as a metric space
[MR1253544], but one can consider other asymptotic invariants for spaces.
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Question 14. When does a CW complex have the homotopy type of a complex
having polynomially many cells in dimension n?

This is a quantitative version of Wall’s finiteness obstruction [MR171284].
Interestingly, a space might have Poincaré duality but not in a polynomially
bounded sense, so there are analogies to be made between this project and the
homology manifold projects.

Crichton Ogle has developed polynomially bounded cohomology [MR2109110].
I have collaborated with Ogle to work through the foundations of polynomially
bounded—and more generally, B-bounded—homotopy theory [MR2962981],
which would be one framework within which the above question could be
addressed. Specifically, given a bounding class B, we construct a bounded
refinement BK(−) of Quillen’s K-theory functor from rings to spaces. As de-
fined, BK(−) is a functor from weighted rings to spaces, and is equipped with
a comparison map BK → K induced by “forgetting control.” In contrast
to the situation with B-bounded cohomology, there is a functorial splitting
BK(−) ' K(−) × BKrel(−) where BKrel(−) is the homotopy fiber of the
comparison map.

Finally, there is also an analogy to be made between “weighted rings” and
the geometric modules of Quinn [MR802791], along with B-bounded homo-
topy theory and controlled topology. Much of our work in [MR2962981] is in
building an appropriate B-bounded Waldhausen category. At the point where
one can define B-bounded Waldhausen categories, why not go all the way and
consider a B-bounded model theory?

Christensen and Munkholm have placed continuous and bounded notions
of control into a common, categorical framework [MR1983017]; Higson–
Pedersen–Roe have introduced a different framework unifying various kinds of
coarse spaces, from an analytic perspective [MR1451755]. Weiss–Williams
formulate some examples of control within Waldhausen categories with dual-
ity [MR1644309]. All of these notions could be unified into a single theory
of controlled model categories. Anderson’s homotopy theory for boundedly
controlled topology [MR953961] is a starting point.

There is some precedent for considering a controlled model category, namely
the parametrized homotopy theory of May–Sigurdsson [MR2271789]. This
latter theory, however, is more topological than geometric—the reference maps
are not to metric spaces. Nevertheless, elucidating the precise relationship be-
tween the parametrized homotopy theory of May–Sigurdsson and the spectral
cosheaves used in stratified surgery (see [MR1308714]) would be very worth-
while.

3. Undergraduate research

There are two different ways to involve undergraduates in research. One way
is to do research projects with undergraduates: I have two successful projects
that involved undergraduates in a significant way, as well as some proposed
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projects that I hope to do with future students. The other way to involve
undergraduates is to do research on them: I have an ongoing project called
MOOCulus, an adaptive learning platform that I built. There have been about
150k enrollments in this online course, so we have quite a bit of data.

3.1. No three in line. For a group G, let T (G) denote the cardinality of
the largest subset S ⊂ G so that no three elements of S are in the same
coset of a cyclic subgroup. Undergraduates Andrew Groot and Deven Pandya,
advised by myself and my colleague Bart Snapp, considered the case G =
Z/mZ× Z/nZ, and showed that

T (Zp × Zp2) = 2p,

T (Zp × Zpq) = p+ 1.

This problem can also be formulated as a Gröbner basis question; after doing
so, we computed T (Zm × Zn) for 2 ≤ m ≤ 7 and 2 ≤ n ≤ 19. These results
are available in [2012arXiv1203.6604F].

This problem presents some nice connections for undergraduates. Thinking
of a coset of a cyclic subgroup as a “line,” there is then connection with the
usual “no three in line problem.” Paul Erdös proved that for a prime p, one can
place p points on the p× p lattice in the plane [MR41889]; the construction
goes via a parabola modulo p. Other more complicated constructions manage
to place more points [MR366817].

Another nice connection is made by considering other groups. Although the
no-three-in-line problem for G = (Z/pZ)2 can be considered as the k-arc prob-
lem from projective geometry [MR554919], the question is also interesting
for, say, G = Sn or G = An where, say, Bezout’s theorem doesn’t make sense
anymore.

3.2. Transversal of primes. Matej Penciak, then a student at the University
of Rochester, among other students at the Ross program, became interested
in the following question.

Question 15 (Question 1.6 “Transversal of Primes” from [MR2847943]).
Let p be the nth prime, and place the integers 1 through p2 into a p× p array
in order. Is it possible to choose a set of p primes from the array so that no
two appear in the same row or column?

During Summer 2012, we gathered some evidence on this question. Our
approach used WalkSAT [walksat], a local search algorithm for Boolean sat-
isfiability problems. We verified that it is possible to arrange p primes on a
p× p board, no two in a row or column, for primes ≤ 1291.

3.3. Proposed undergraduate research projects. Here are some pro-
posed projects that could become good activities for undergraduates.

Space of five-by-five natural images: Carlsson–Ishkhanov–De Silva–
Zomorodian found a Klein bottle in the space of 3× 3 pixel patches of
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natural images [natural-images]. To be a bit more precise, each 3×3
pixel patch from a black-and-white image yields a point in [0, 1]9 ⊂
R9; one can normalize for brightness and contrast, and then apply a
“thresholding” procedure to throw away some outliers. Many of the
remaining points are close to a Klein bottle embedded in R9. A nice
project would be describe the structure of, say, 5× 5 pixel patches. A
first step would be to compute the persistent homology [MR2121296]
of the (suitably “thresholded”) point cloud, which could be done with
available software by an undergraduate having some background in
computer science.

Roots of random quaternionic polynomials: There are other exam-
ples of point cloud data coming from “pure mathematics” for which it
would be interesting to calculate the persistent homology. For exam-
ple, there are well-known results on the distribution of complex roots of
random polynomials, some of which are topologically interesting—for
some distributions, the roots lie close to a circle. There are algorithms
for finding roots of a quaternionic polynomial [MR6980] which can
be performed in practice [MR1851239], so what sort of topological
structure might one find in the roots of random quaternionic polyno-
mials? The same skillset that would help an undergraduate analyze
the space of 5 × 5 pixel patches could be applied to this question, as
well.

Representation theory and the genetic code: The genetic code de-
scribes how sequences of DNA are transformed into proteins; the code
is redundant, but why? Considering that there are a large number of
genetic codes, why should we see only a handful of possible codes in
nature? Hornos and Hornos investigated the symmetries of the genetic
code via representation theory [originalhornos], akin to the tech-
niques used in particle physics with Lie groups. But the genetic code is
discrete, so instead of the representation theory of Lie groups, modular
representation theory is arguably the natural mathematical home for
such study. The “wobble pair” phenomena might be suggestive that
symplectic geometry is relevant, i.e., thinking of a codon—three base
pairs—not as a vector in (F4)

3 but as a vector in (F2)
6 adorned with a

symplectic form. I found a 64-dimensional (i.e., 64 = 43 codons) rep-
resentation of Sp(6,F2) over the field F2 in which there are 21 minimal
submodules for a smaller symmetry group (i.e., 20 amino acids and 1
stop code); moreover, the dimensions of these minimal submodules are
just large enough to account for the redundancy in the genetic code.

It would be interesting to work with, say, an undergraduate student
interested in math biology, teach them a bit of representation theory,
and work out some of the consequences. Of course, this project, like
most of the work done on representation theory and the genetic code,
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is highly speculative. One complaint is that such work is “mere nu-
merology” which does not even succeed in giving the correct answer
for the standard genetic code: for instance, there is no example in
[forger-1999, forger-1998] of a Lie group having precisely the cor-
rect representation theory to give rise to the standard genetic code,
though there is a near-miss differing only in the symmetry breaking at
the last stage.

3.4. MOOCs and adaptive learning. In January 2013, I launched the first
massive open online course (MOOC) at The Ohio State University. My course
was designed to cover the same content as the local, in-person sections of
Math 1151, the first semester calculus course at OSU. The largest component
of this MOOC consisted of a home-built adaptive learning platform I designed,
called MOOCulus, which delivers randomly-generated interactive problems to
students [evans].

Beyond my ∼ 200 lecture videos—some of which make use of augmented
reality—the MOOCulus platform has generated significant amounts of data
on the learning of calculus. As of November 2013, we have had 147k students
enroll in either the Coursera or iTunes U version of my courses. These enroll-
ments have led to millions of attempts, and over two million correct answers,
being submitted to MOOCulus.

The Division of Undergraduate Education at the NSF has funded a Trans-
forming Undergraduate Education in STEM (TUES) Type 1 award for my
proposal DUE–1245433 (“Interactive Textbook”) with Bart Snapp and Herb
Clemens. The proposed activity will produce an online platform making it
easier for other instructors to build engaging online courses like MOOCulus.
The goal is to build one of the “customizable, sustainable platforms” that on-
line education requires to succeed [bowen2013higher]; parts of MOOCulus
have already been used for English courses as well [gates-foundation-grant].

Much previous work has been done on using adaptive learning systems to
teach college mathematics. Examples of such are ALEKS [hagerty2005using,
albert1999knowledge] or Knewton at Arizona State [parry2012big], though
both of these emphasize pre-calculus, developmental coursework. Some of
these platforms use Bayesian networks to estimate a student’s current under-
standing [romero2010educational]. Hidden Markov models (HMMs) have
also been used in educational data mining for clustering [shihdiscovery].
These techniques and related “machine learning” techniques can predict stu-
dent grades based on only a few assignments [predict-grades], even with
incomplete data [Zafra201115020], which make them especially useful for an
adaptive learning platform where not too much student data may be available
on which to base the initial predictions.

For MOOCulus, I chose to use a hidden Markov model to estimate stu-
dent understanding; exactly which problems are assigned to the student de-
pend on the output of the model. Hidden Markov models can provide strong
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predictions of student behavior; in one example, a hidden Markov model—
trained, as I propose here, via the Baum–Welch algorithm—did a better job
of predicting student behavior in an e-Learning context than did a neural net
[anari2012intelligent]. Nevertheless, exactly how best to train the MOOCu-
lus model remains a question.

Question 16. What are the “correct” parameters for the hidden Markov
model in MOOCulus?

Parameter estimation is an extremely well-studied topic in the theory of
Markov processes, e.g., [MR202264] and [MR123419]. Before having access
to student data, instructors often “have to provide appropriate values for the
parameters in advance in order to obtain good results/model and therefore,
the user must possess a certain amount of expertise in order to find the right
settings” [romero2010educational]. This is a serious usability problem with
many adaptive learning systems—MOOCulus included.

Determining appropriate values for these parameters is a usability issue, and
also one of the major research questions my work addresses. The plan is to use
the Baum–Welch algorithm from the GHMM library [ghmm] so improvements
to the parameters can be made automatically. The overarching goal is that
MOOCulus will improve student outcomes in math courses, as has been shown
to happen with other online assessment systems [angus2009does].


